
Message Strip Mining Heuristics for High Speed

Networks

Costin Iancu1, Parry Husbands1, and Wei Chen2

1 Computational Research Division, Lawrence Berkeley National Laboratory
{cciancu,pjrhusbands}@lbl.gov

2 Computer Science Division, University of California at Berkeley
wychen@cs.berkeley.edu

Abstract. In this work we investigate how the compiler technique of
message strip mining performs in practice on contemporary high perfor-
mance networks. Message strip mining attempts to reduce the overall
cost of communication in parallel programs by breaking up large mes-
sage transfers into smaller ones that can be overlapped with compu-
tation. In practice, however, network resource constraints may negate
the expected performance gains. By deriving a performance model and
synthetic benchmarks we determine how network and application char-
acteristics influence the applicability of this optimization. We use these
findings to determine heuristics to follow when performing this optimiza-
tion on parallel programs. We propose strip mining with variable block
size as an alternative strategy that performs almost as well as a highly
tuned fixed block strategy and has the advantage of being performance
portable across systems and application input sets. We evaluate both
techniques using synthetic benchmarks and a hand-optimized applica-
tion kernel from the NAS Parallel Benchmark Suite.

1 Introduction

Reducing the overhead of message transfers is the goal of many optimization
techniques for parallel programs. One such strategy, message vectorization [19],
reduces communication time by hoisting fine-grained reads and writes outside
loops and coalescing them into block transfers. This has the benefit of speed-
ing up communication both by amortizing startup costs and by taking advan-
tage of the higher bandwidths realized for larger messages. Vectorization has
been implemented in optimizing compilers for a variety of parallel programming
languages [9, 14, 13], and is widely recognized as an extremely useful manual
optimization for message-passing programs.

While message vectorization is a common and effective optimization, it alone
is not enough to minimize total run time, as the processor remains idle while the
network is busy performing the bulk message transfer. In this paper we focus
on a technique called message strip mining [18] that may further enhance the
effectiveness of the message vectorization optimization. While a vectorized loop
waits for the remote memory access to complete before it proceeds with local

computation, message strip mining divides communication and computation into
sub-blocks and pipelines their executions by skewing the loop. This leads to an
increase in the number of messages sent and thus message startup costs, but has
the potential of reducing communication overhead through the overlapping of
non-blocking send and receive operations with independent computation. Tech-
niques such as loop unrolling can further enhance the effectiveness for message
strip mining by increasing the number of operations available for overlap.

Applying message strip mining carelessly may result in performance degra-
dation due to both increased message startup costs and network contention.
Furthermore, performance is directly influenced by application characteristics;
the data transfer size and the ratio between communication and computation
affect the amount of available overlap. A systematic scheme is therefore required
to evaluate, for a vectorizable loop, whether it is worthwhile to perform message
strip mining and loop unrolling based on the network parameters and applica-
tion communication patterns. Our contributions in this paper are: 1)An enumer-

ation of application and machine characteristics that influence the applicability

and performance of message strip mining; and 2) A determination of how these

characteristics guide us in choosing a good message decomposition for message

strip mining based on analytical models and experimental results.

Our work differs from previous investigations [17, 18] in that we consider
both network and application characteristics, use a performance model based
on LogGP [6], and use both synthetic and application benchmarks that capture
the characteristics of a wide class of programs. We also introduce a variable
block size message decomposition that performs in practice almost as well as
the fixed size strategy while being less sensitive to variations in the performance
parameters. Experimental results suggest that message strip mining is a highly
effective optimization for any vectorizable loop whose total data transfer size
exceeds a minimal threshold that has a typical value of 2-4 KBytes for today’s
high performance networks. Furthermore, the optimization does not require a
large amount of local computation to be effective, provided the fetched remote
data is loaded at least once; the overhead of the associated cache misses is usually
enough to hide most of the communication time. Therefore, we believe message
strip mining holds great potential as an automatic compiler optimization for
reducing application communication costs.

The rest of this paper is organized as follows. Section 2 introduces message
strip mining and identifies network and application characteristics that affect the
success of this optimization. The analytical model for the performance of strip
mining is described in Section 3, and our experimental results are presented in
Section 4. Related work is surveyed in Section 5 and we conclude in Section 6.

2 Message Strip Mining

Strip mining is a loop transformation commonly associated with vectorizing com-
pilers. In this context a single loop is first transformed into a doubly nested loop
and the inner loop is replaced by a sequence of vector instructions. This trans-

formation is illustrated in Figures 1 and 2 (the generation of vector instructions
is omitted). The parameter S, often dependent on the size of a vector register is
usually referred to as the strip size.

for(i=0; i<N; i++)

a[i] = b[i]+r[i];

Fig. 1. Unoptimized loop.

for(i=0; i<N; i+=S)

for(ii=i; ii<min(i+S-1,N), ii++)

a[ii] = b[ii]+r[ii];

Fig. 2. Strip mined loop.

get(lr, r, N);

for(i=0; i<N; i++)

a[i] = b[i]+lr[i];

Fig. 3. Vectorized loop.

In this paper we explore a less well-known application of strip mining: its
ability to reduce the communication overhead of parallel programs. Following
the standard “owner computes” rule that most parallel paradigms adhere to,
we consider only remote read operations as candidates for message strip mining,
though the analytical model and optimization techniques presented in this paper
can easily be adapted to support remote writes.

Returning to Figure 1 and assuming that a and b are local arrays and r

is remote we now demonstrate message strip mining. Figure 3 displays the re-
sults of applying message vectorization to the unoptimized loop. Performance
is significantly improved by copying all remote value in one bulk transfer in-
stead of performing a read operation in every iteration. One disadvantage with
such a transformation, however, is that the processor must wait for the com-
pletion of the remote transfer (denoted by T (N)) before proceeding with the
local computation. Figure 4 demonstrates the process of message strip mining,
which attempts to reduce this communication cost. The single bulk transfer3

from Figure 3 is divided into several blocks based on the strip size, and the loop
is then skewed so that both the communication and computation code can be
performed in a pipelined manner. This transformation is thus similar in spirit to
software pipelining, as it also exploits the parallelism within the loop body by
allowing the communication and computation phases of several iterations of the
loop to be processed simultaneously. Moreover, the computation is not the only
source of overlap; as Figure 5 shows, loop unrolling can be additionally applied to
allow the communication operations for different strips to be issued at the same
time and increase the amount of overlap (both computation and communication)
available in the unrolled loop body. In the ideal scenario (ignoring the overheads
of initiating and completing remote operations), the communication time of each
strip is completely overlapped with independent computation or communication
from previous iterations, leaving only the overhead T (S) of transferring the strip
peeled off the loop body. Since in general the strip size is much smaller than to
the total data size, the optimal performance gain T (N) − T (S) can be signifi-
cant. A less obvious benefit of this optimization is that it can help reduce the
amount of shadow memory used to store remote elements. While a vectorized
loop requires an N element buffer, the message strip mined loop can reuse the

3 We denote a blocking memory read operation by get(dest, src, nbytes) and a
non-blocking read operation by h = nbget(src, dest, nbytes). The completion
test for a non-blocking remote memory operation is denoted by sync(h).

shadow memory and therefore only requires U ∗S elements, where U is the unroll
depth of the loop.

h0 = nbget(lr, r, S);

for(i=0; i<N; i+=S)

h1 = nbget(lr+S*(i+1), r+S*(i+1), S);

sync(h0);

for(ii=i; ii<min(...); ii++)

a[ii] = b[ii]+lr[ii];

h0=h1;

Fig. 4. Message strip mining.

h[0] = get(lr, r, S);

for(i=0; i<N; i+=S*U)

h[1] = nbget(..., S);

...

h[U] = nbget(..., S);

sync(h[0])

for(ii=i; ii<S; ii++)

a[ii] = b[ii]+lr[ii];

...

sync(h[U-1]);

for(ii=i+S*(U-1); ii<min(...); ii++)

a[ii] = b[ii]+lr[ii];

h[0] = h[U];

Fig. 5. Unrolling a strip mined
loop.

2.1 Practical Considerations for Message Strip Mining

Message strip mining decomposes the transfer of data into a series of smaller
transfers overlapped with local computation, thereby lowering the overall run-
time of the application. Loop unrolling exposes more potential for overlap by
increasing the number of messages that can be simultaneously issued. Both op-
timizations, however, have the potential for causing performance degradation:
message strip mining by increasing the startup cost of communication and loop
unrolling by increasing message contention in the network. To understand the
impact of combining these transformations, one has to take into account both
machine characteristics and application characteristics.

Machine Characteristics: The LogGP [6, 10] network performance model ap-
proximates the cost of a data transfer as the sum of the costs incurred by the
transfer in all system components. This is illustrated in Figure 6. Parameters of
special relevance to us are os and or, the send and receive overhead of a message;
G, the inverse network bandwidth; and g, the minimal gap required between the
transmission of two consecutive message.

According to the model, the cost of a single message transfer can be di-
vided into two components; the software overhead on both the send and receive
side, as well as the time the message actually spends in the network. The to-
tal communication cost of the vectorized loop presented in Figure 3 is thus
Tvect(N) = o+G∗N , where o is the sum of os and or. The total communication
cost of the strip mined loop (in Figure 4), on the other hand, must be expressed
as the sum of the time spent issuing the non-blocking gets and the time spent
waiting for the corresponding syncs. It is now easy to see how message strip
mining could have a negative impact on performance. Although the transfor-
mation does not increase message volume, it incurs more software overhead due
to more messages being issued. Furthermore, since smaller messages are trans-
ferred this overhead becomes a greater fraction of communication time. While
picking a small strip size allows for more overlapping of the waiting times, it is

also accompanied by an increase in issue time. Loop unrolling introduces further
complications, as the effective time to issue a non-blocking get operation can de-
pend not only on the transfer size S but also on the number of these operations
issued in sequence U . Hence large unroll depths, though theoretically attractive,
may not be desirable in practice due to this network limitation. In Section 3 we
analyze these tradeoffs in greater detail.

Another potential source of performance degradation is introduced by net-
work resource limitations. The LogGP model assumes an “ideal” network with
no resource constraints and considers the parameters to be constant. In prac-
tice, combining loop unrolling with message strip mining increases the number
of outstanding messages on the Network Interface Card at a given time and can
have a large performance impact on networks where resources are scarce.

In addition to NIC resources, remote DMA message transfers also compete
with the processor for access to a node’s memory system. This “interference”
may adversely affect the speed of local computation by effectively increasing the
time to access memory. These effects are considered further in Section 4.2.

Application Characteristics: Data transfer size is perhaps the most impor-
tant factor in determining the effectiveness of message strip mining for a vec-
torized loop. An intuitive rule of thumb is that each strip transfer should be a
bandwidth-bound (G ∗N > o) message, so that the increase in message startup
costs can be compensated for by the potential performance gain from hiding the
message transfer time. We further explore this concept in Section 4.3.

Even with a large transfer size, message strip mining is still not useful unless
we can discover enough computation to overlap. In other words, the computation
cost of a strip, C(S), should not be significantly smaller than its communica-
tion cost T (S). While loop unrolling mitigates this problem by increasing the
number of iterations that execute simultaneously, it also leads to an increase in
message initiation time. Since network performance is generally orders of magni-
tude worse than CPU performance , it may appear that sufficient overlap could
not be attained without a large amount of computation. This assumption is not
true, however, as it neglects the cost of memory access. Because remote data is
typically transferred (by DMA) directly to main memory (and not the cache),
they must then be brought into the cache for further processing. Cache miss
penalties, which are also incurred by the vectorized loop, provide more time
for the overlap of communication with computation. Thus, when estimating the
“effective” local computation cost, one must also take into account the effect of
local memory bandwidth. We study the implications further in Section 4.1.

Finally, the application’s communication pattern determines the degree con-
tention in the network system and so influences the effectiveness of our transfor-
mation. We consider the following communication patterns, ranging from least
to most contention: one-to-one and all-to-one.

The rest of the paper is devoted to finding heuristics to determine for any
given system the following parameters: the minimum amount of computation
that benefits from message strip- mining, the minimum message size where mes-

sage strip-mining begins to pay off and the optimal message decomposition and
schedule.

3 Estimating the Impact of Strip-Mining

We begin our analysis by using the LogGP model we derive the communication
costs for the loops shown in Figures 1, 3, 4, and 5.

Individual Small Messages (Figure 1): Tsmall(N) = N ∗EEL. One is forced
to pay the full network cost for a small message on every access.

With Message Vectorization (Figure 3): Tvect(N) = o + G ∗N . This is the
cost of one large message transfer.

Message Strip-Mining and Unrolling (Figures 4 and 5):
In this case each sync waits if the transfer (with time G ∗ transfersize) is

not completed by the time the execution encounters the sync. The total com-
munication cost is the sum of the overhead of initiating all the transfers and the
waiting time for the sync call of each transfer. If the message is divided into m

blocks S1, ...Sm, the waiting time W (Si) for each block can be expressed as an
equation based on the network parameters and computation costs:

W (S1) = G ∗ S1 − issue(S2)
W (S2) = G ∗ S2 − C(S1)−W (S1)− issue(S3)
.

W (Sm) = G ∗ Sm − C(Sm−1)−W (Sm−1) (1)

Each equation is in addition subject to the constraint W (Si) >= 0. The
above represents the case where the unroll depth is one; equations for different
number of unrolls can be derived in a similar fashion. C(Si) refers to the costs
of computation performed on a block, and for simplicity we assume it can be
expressed as a linear function K∗Si, without much loss of generality4. As the goal
of message strip mining is to minimize the communication cost, it is equivalent to
solving the above system to find m and the sequence S1, . . . , Sm that minimizes
the objective function

Tstrip+unroll =

m∑

i=1

issue(Si) + W(Si) (2)

Finding the optimal message decomposition involves exploiting the tradeoffs
on m, the number of transfers. A small m may minimize the waiting time but
cause an excessive startup overhead, while a large m may exhibit the opposite
problem and a similar tradeoff is encountered when varying the unroll depth. In
the next section we analytically develop message decomposition heuristics that
are straightforward to implement yet can achieve significant performance gains
over a vectorized loop.

4 We are interested in balanced algorithms where communication and computation
are of the same order of magnitude.

3.1 Message Decomposition

Our analysis focus on loops with K ≈ G as the performance of strip mining for
computation bound algorithms is less sensitive to the message decomposition
due to increased potential for overlap. A simple yet effective decomposition is to
make each block equal-sized, so that the total communication cost for a given
loop only depends on one variable5. To find the optimal block size S under this
scheme, we simply search sample decompositions with a representative amount of
computation. Our synthetic experiments in the next section detail our findings.

While the fixed block size scheme is straightforward, it may not achieve
optimal message overlap. In particular, the fixed-size decomposition may cause
the waiting times for the blocks to oscillate between two extremes. It can be
best explained by examining Equation (1): the second sync can be completely
overlapped with the waiting and computation time of the first block, making
W (S2) zero. This, however, means the next sync does not benefit from W (S2)
at all (it can still be overlapped with its computation), resulting in a large
W (S3), which in turn makes W (S4) free. It thus appears that for message strip
mining, a sequence of varying block sizes that better captures the nature of the
waiting time as recurrence relations may outperform the fixed-size scheme. As
a heuristic, we pick the block sizes to be a geometric series Si = (1 + f)Si−1,
where f is between 0 and 1. As a starting block size we choose the size of the
smallest message that still benefits from strip mining as described in Section 4.3.
A good value of f is determined mostly by application characteristics, and is
clearly critical to the performance of our varying block size heuristic; we discuss
in Section 4.5 heuristics for determining a lower bound for the values of the
parameter f .

4 Experiments

In this section we provide quantitative data for the issues discussed in previous
sections on the systems detailed in Table 1. The benchmarks are implemented in
Unified Parallel C [5] and run over a customized communication layer [4, 8] with
performance very close to that of each system’s native communication API. The
first three subsections discuss the effects that memory and network subsystems
have on our optimizations. In particular, we determine the amount of computa-
tion and the minimal total transfer size required for message strip mining to be
effective. Our next set of experiments attempts to determine the best message
decomposition for the different combinations of network and application com-
munication and computation pattern. For the fixed-size scheme we identify the
optimal block size, while for the variable block size scheme we search for the
parameter f . Finally, we illustrate the effectiveness of message strip mining by
performing the optimization on the NAS Multigrid application kernel.

5 We assume U is also fixed; certainly optimal block size can vary with the unroll
depth

System Network CPU type

IBM Netfinity cluster [2] Myrinet 2000 866 MHz Pentium III

IBM RS/6000 SP [1] SP Switch 2 375 MHz Power 3+

Compaq Alphaserver ES45 [15] Quadrics 1 GHz Alpha
Table 1. Systems Used for Benchmarks

4.1 Estimating the Cost of Computation

Our model in the previous section suggests that the effectiveness of message
strip mining heavily depends on whether the vectorized loop contains a sufficient
amount of computation that can be used to hide the communication latency. As
mentioned in Section 2, the architecture’s effective local memory bandwidth
plays a major role on the overall computation cost required by the transferred
data. In most of today’s high performance computing systems the network is not
tightly integrated with the memory hierarchy; the three platforms examined in
this paper have their NICs attached either to a PCI bus (Myrinet and Quadrics)
or to a proprietary bus (the SP switch), and two of them (Myrinet and Quadrics)
use remote DMA operations that bypass the processor’s cache. Accordingly, the
cost of the computation that operates on the transferred data is composed of two
parts: 1) cache miss penalties incurred by accessing the transfered data, and 2)
execution time required by the computation itself. While the second component
obviously varies from application to application, the cache miss penalty is an
inherent part of the computation overhead and does not depend on the type of
computation performed. As the performance gap increases between the processor
and memory subsystem, the sustained memory bandwidth will likely become
the bottleneck in determining the amount of computation available that can be
overlapped with communication using message strip mining.

System Inverse Network Bandwidth Inverse Memory Bandwidth Ratio
(µsec/Kb) (µsec/Kb) (memory/network)

Myrinet 6.089 4.06 67%

Quadrics 4.117 0.46 11%

SPSwitch 3.35 1.85 55%
Table 2. Comparison on the network and memory data transfer rate.

Based on this observation, we compare the cost of moving data across the net-
work with the overhead of moving the same data through the memory hierarchy.
The inverse network bandwidth, or the G parameter of LogGP, is measured by
timing the end-to-end latency of a large get transfer so that the communication
cost is dominated by the wire latency. To determine the latency of moving data
across the memory system, we measure the execution time of a code sequence
that performs an integer vector reduction accum += data[i];. In some sense,
this represents the minimal amount of computation possible on the transferred
data (one memory access, one integer add, and one address increment), assuming
the each remote element is referenced at least once. and it also has the lowest
memory overhead due to the unit stride access.

Table 2 presents the results for our test platforms. Memory access time proves
to be an important source of computation overhead. For some of our test plat-
forms, the cost of fetching data from main memory is at least half the cost of
moving the same data from network, with the exception of the Quadrics system.
This provides an important insight, that essentially no limitation exists on the
minimal amount of computation a vectorized loop must exhibit before it could
benefit from message strip mining; as long as the loop accesses all of its remote
values, in general the cache miss penalties alone will provide adequate amount
of computation that allows communication latencies to be effectively hidden.

4.2 Interference Effects

To determine the effect of network transfers on local computation, we time simple
computation loops on a node where the networking subsystem is serving remote
read requests from a variable number of processors. As local computation we
use the loop presented in the previous section that accesses memory with stride
one and a loop performing the same vector addition but using indirect accesses
with a uniform index distribution. The latter exhibits a much higher processor
to memory traffic.

For all systems, our results show a slowdown of the computation loop ranging
from 3% to 6%. The slowdown increases with the increase in local memory traffic
and it is not affected by the number of nodes reading data from the memory
space of the computation node. We conclude that interference from the network
DMAs does not substantially affect the cost of memory access, and therefore
does not substantially affect the effectiveness of strip mining.

4.3 Networking Subsystem Influence

In this section we use the LogGP model to guide us in determining the minimum
message size that benefits from message strip mining. Based on our model, we
note that any strip mining strategy must pay a minimum cost of o+max(o, g)+ε,
because it decomposes the transfer into at least two messages. We include an
extra ε to account for any syncs with a non-zero waiting time. For message strip
mining to be worthwhile, we must thus have o + G ∗ N > o + max(o, g) + ε,

which implies N >
max(o,g)+ε

G
; a lower bound for N is max(o,g)

G
. Using values for

the ratio g
G

obtained in [7] this lower bound is between 1KB and 3KB for all
platforms. This value is verified by experiments described in the next section,
where message strip mining performs well only for transfers larger than 2KB.

4.4 Influence of Application Characteristics

In order to determine the validity of our model and the “real-world” performance
of message strip mining, we used a set of synthetic and application benchmarks.
We chose the grid re-distribution step in the NAS-MG [3] benchmark to illustrate
the point that memory traffic (in this case data redistribution) can provide

Network No. Threads Base Strip Mining

Myrinet 2 1.24 (1) 0.81 (1.53)

4 0.71 (1) 0.49 (1.45)

SP Switch 2 0.69 (1) 0.42 (1.64)

4 0.44 (1) 0.35 (1.25)

Quadrics 2 0.32 (1) 0.28 (1.14)

4 0.29 (1) 0.28 (1.03)

Table 3. Communication time for MG with different optimizations. The timing units
are in seconds, and the parenthesized number reflects the speedup compared to the
base case.

enough computation for overlap. We also use a synthetic benchmark with a
problem configuration where each processor holds a variable number of double
precision floating point values and performs either a reduction operation or a
vector-to-vector operation. The total number of elements per processor is varied
between 28 and 220 with resulting total transfer sizes between 2KB and 8MB.
For the vector-to-vector operation, each element update involves three floating
point operations and both the source and destination vectors are accessed with
stride one.

For each benchmark, we provide implementations corresponding to the strip-
mining strategies outlined in Figures 4 and 5. We vary the parameters N - total
problem size, S - strip size, U - unroll depth, P - number of processors and the
communication pattern. In evaluating the various message strip-mining tech-
niques we seek to determine how much each technique buys us compared to
the basic vectorization strategy. As such, in this section we present performance
results showing the ratio of time taken by the “optimized” strategy to the vec-
torized strategy.

For lack of space, we have selected only the results presented in Figure 8.
The results for the NAS-MG benchmark are presented in Table 3. The overall
conclusion of this study is that while message decomposition with a fixed size
strategy slightly outperforms the variable size strategy, its performance is more
sensitive to the total transfer size, message size, communication pattern and the
amount of computation on the transferred data. In practice, tuning the perfor-
mance of the variable size strategy based only on the computation is enough to
guarantee performance close to the best observed case for a fixed size. Unrolling
loops more than two to four times is not a worthwhile optimization and there
exists a lower bound on the message size that should be taken into account. The
following sections explore into further detail the major trends observed across
the machines

Effect of Block Size and Unroll Depth: Referring again to Figure 8 we
discuss some of the major trends observed in the experiments. As a first ob-
servation, we note that a tuned strip mining implementation always improves
performance compared to a vectorized-only implementation. The more expen-
sive the computation following a network transfer, the better the impact of strip
mining due to a higher opportunity for overlap. For example, on the IBM-SP
for the one-to-one communication pattern we observe a 30% improvement in the

best case for the “Reduction” benchmark compared to a 40% improvement in
the best case for the “Vector” benchmark. Similar trends are observed for the
other platforms.

For the one-to-one communication pattern we note the following: 1) Com-
paring the performance of the variable strip size strategy with the fixed size
strategy we find that the latter outperforms the former (in the best case) for
most problem sizes. For example, for the tuned Myrinet implementation of the
variable size strategy we found the difference in performance in the range 0%-4%.
Running the same implementation on a different platform, increases the relative
difference to 10%-15%. For all platforms and communication/computation com-
binations, a fixed size message decomposition usually improves performance. For
all platforms, there exists an optimal range for the message decomposition that
depends on the total transfer size. Given the optimal decomposition, continu-
ously decreasing the transfer size will result in slow-down compared to the vec-
torization case. The “optimal” message size range where a fixed decomposition
outperforms a variable size decomposition is narrow. Furthermore, values outside
this optimal range cause a performance degradation larger than the maximum
of 15% observed for a badly tuned variable size implementation. 2) Combining
strip mining with unrolling usually improves performance. On Myrinet and the
IBM SP network, unrolling with small factors (2 or 4) improves performance.
On the Quadrics network, unrolling causes a performance degradation.

For the all-to-one communication pattern we note: 1) While strip mining is
still an effective strategy, increasing the degree of contention causes a decrease
of speedup. 2) The fixed size strategy outperforms the variable size strategy (for
a tuned implementation) by 2%-4%. Increasing the degree of contention causes
an increase of the size of the optimal decomposition compared to the one-to-one

communication pattern. 3) Loop unrolling does not improve performance for this
communication pattern.

P0

P1

os

L

or

EEL

Fig. 6. Traditional LogP model for sending
a message from processor P0 to processor
P1.

10

11

12

13

14

15

16

17

18

19

13 14 15 16 17 18 19 20 21 22 23 24

Transfer Size (2^x elem)

S
tr
ip
 S
iz
e
 (
2
^
y
 e
le
m
)

1-st

2-nd

3-rd

Fig. 7. Variation of the optimal fixed strip
size with the total transfer size for Myrinet.

4.5 “Optimal” Message Decomposition

Based on our experimental results, we now present some guidelines for choosing
an“optimal” message decomposition for a given problem. Our results indicate
that the performance of a fixed size decomposition depends on the total problem

size, on the computation and on the application communication pattern. Accord-
ingly, when using this strategy, an application needs to be tuned with respect to
all three parameters.

One important parameter for the fixed strip size decomposition is the ratio N
S

,
the total number of blocks transferred. Figure 7 presents the best three decom-
position values based on the total message size for the “Reduction”benchmark
on the Myrinet platform. Choosing the “optimal” decomposition for any given
application can be achieved employing a search based strategy using the find-
ings in this paper to prune the parameter search space. As a starting point for
the search we choose the middle of the decomposition domain. We note that in-
creasing the total size increases the block size. Increasing the degree of contention
also increases the block size. Increasing the amount of computation decreases the
strip size. However, as indicated by Amdahl’s Law, the benefits of strip mining
will be less and less pronounced with an increase in the cost of computation.

While employing a fixed size strategy, any variation of the three parameters
requires a “re-tuning” of the application. On the other hand, the performance
of the variable strip size strategy requires only an approximation of the compu-
tation cost. The performance of this approach is highly dependent on the values
of the multiplication coefficient 1+f . This value determines the number of mes-
sages issued and the size of each message. For small values of f , the algorithm
issues an increased number of transfer requests and thus incurs a high message
initiation and control overhead. Increasing the value of f increases the probabil-
ity of poor overlap since transfers might have to wait for completion. For best
performance, a search based strategy is also required to determine the value of
this parameter. In this paper we obtained a value of 0.45 by tuning the Myrinet
implementation. This value performed as well on the IBM-SP platform and a
little worse on the Quadrics platform. We have also experimented with “heavy”
computations and found that the same value performs well enough in practice
due to the diminishing returns implied by Amdahl’s Law. We recommend for the
Myrinet and the IBM-SP platforms a search range of 1.4 : 1.6 with an increment
of 0.01. For the Quadrics platform we recommend a range of 1.1 : 1.4. In both
cases, finding a good value for f requires a low number of experiments.

5 Related Work

Wakatani and Wolfe [18, 17] introduce message strip mining and analyze its
impact for array redistribution in HPF and a code that implements a simple
inspector-executor. They consider only strip mining with constant block size
and use a simple model tailored for the array redistribution problem to predict
the performance benefits.

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

log(Block Size)

R
at

io

Size=1048576 Network=Myrinet Threads=4 one−to−one ctype=Reduction

unroll 1
unroll 2
unroll 4
unroll 8
unroll 16
Var Block Size Unroll = 1
Var Block Size Unroll = 2
Var Block Size Unroll = 4

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

log(Block Size)

R
at

io

Size=1048576 Network=Quadrics Threads=4 one−to−one ctype=Reduction

unroll 1
unroll 2
unroll 4
unroll 8
unroll 16
Var Block Size Unroll = 1

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

log(Block Size)

R
at

io

Size=1048576 Network=IBM−SP Threads=4 all−to−one ctype=Reduction

unroll 1
unroll 2
unroll 4
unroll 8
unroll 16
Var Block Size Unroll = 1
Var Block Size Unroll = 2
Var Block Size Unroll = 4

6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

log(Block Size)

R
at

io

Size=1048576 Network=IBM−SP Threads=8 all−to−one ctype=Reduction

unroll 1
unroll 2
unroll 4
unroll 8
unroll 16
Var Block Size Unroll = 1
Var Block Size Unroll = 2
Var Block Size Unroll = 4

Fig. 8. Selected performance results. Problem size = 220 doubles, ctype = Reduction.

Heras et al. [11] analyze vectorization techniques for Gaussian elimination
codes on a Fujitsu VP2400/10 vector computer. They consider a combination of
loop unrolling, interchange, fusion, distribution and sectioning techniques (strip
mining, tiling and blocking). They do not analytically model the interactions
among their optimizations and conclude that loop vectorization optimizations
can be decoupled from other serial loop transformations since they do not modify
the data reuse in the algorithm.

Gupta and Banerjee [12] present a methodology for estimating the com-
munication costs in HPF programs. They use the analysis to guide the data
partitioning decisions of their compiler and also to select communication prim-
itives. Their work is directly applicable to the analysis of UPC programs, but
it does not take into account contention as generated by the program commu-
nication pattern or the interference caused by the communication primitives on
the memory performance of the communication peers. Evidence presented by
Prieto et.al.[16] suggests that memory interference on the communication peers
can severely affect performance.

6 Conclusion

In this paper we investigated message strip mining as a communication opti-
mization technique, introduced strip mining with a variable size, demonstrated
the effectiveness of both techniques and analyzed the factors that influence the
performance of these program transformations.

We find the potential performance gain to be heavily dependent on both
the network characteristics and the application characteristics. We empirically
determine a lower bound on the total problem size after which our optimizations
are effective. This value is 2KB for all networks studied. While we find that a
well tuned fixed size strategy usually outperforms the variable size strategy by
0%-4%, its performance is very sensitive to all optimization parameters. On the
other hand, the performance of the variable size strategy is determined only
by the computation pattern and we recommend this approach when developing
performance portable applications.

Besides application development, the heuristics that we examine in this pa-
per are also of interest when developing collective communication libraries and
vectorizing compilers. We plan on using the variable strip size strategy in our
UPC implementation work in both areas.

Acknowledgment

The authors would like to thank Paul Hargrove for the GasNet program that
determines network parameters.

References

1. IBM SP – Seaborg. http://hpcf.nersc.gov/computers/SP/.

2. NERSC Alvarez Cluster. http://www.nersc.gov/alvarez.
3. The NAS Parallel Benchmarks. Available at

http://www.nas.nasa.gov/Software/NPB.
4. The UPC Runtime Specification, v 1.0 . Available at

http:/upc.lbl.gov/docs/system.
5. UPC Language Specification, Version 1.0. Available at http://upc.gwu.edu.
6. A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incor-

porating Long Messages into the LogP Model for Parallel Computation. Journal
of Parallel and Distributed Computing, 44(1):71–79, 1997.

7. C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Husbands, P. Hargrove, C. Iancu,
M. Welcome, and K. Yelick. An Evaluation of Current High-Performance Networks.
In Proceedings of 17th International Parallel and Distributed Processing Symposium
(IPDPS), 2003.

8. D. Bonachea. Gasnet specification, v1.1. Technical Report CSD-02-1207, Univer-
sity of California at Berkeley, October 2002.

9. Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. A compilation ap-
proach for Fortran 90D/HPF compilers on distributed memory MIMD computers.
In Proceedings of the Sixth Workshop on Languages and Compilers for Parallel
Computing, Portland, OR, 1993.

10. D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel
Computation. In Principles Practice of Parallel Programming, pages 1–12, 1993.

11. D. B. Heras and M.J. Martin and M. Amor and F. Arguello and F.F. Rivera and O.
Plata. Comparing Vectorization Techniques for Triangular Matrix Decomposition
Computations. In 5th International Conference on Parallel Computing, September
1995.

12. M. Gupta and P. Banerjee. Compile-Time Estimation of Communication Costs
on Multicomputers. In Proceedings of the 6th International Parallel Processing
Symposium, Beverly Hills, CA, 1992.

13. M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.-Y. Wang, W.-M.
Ching, and T. Ngo. An hpf compiler for the ibm sp2. In Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), page 71. ACM Press, 1995.

14. S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD
distributed-memory machines. Communications of the ACM, 35(8):66–80, 1992.

15. Lemieux. http://www.psc.edu/machines/tcs/lemieux.html.
16. M. Prieto and I. M. Llorente and F.Tirado. Data Locality Exploitation in the

Descomposition of regular Domain Problems. In IEEE Trans. on Parallel and
Distributed Systens, volume Vol 11, pages 1141–1150, 2000.

17. A. Wakatani and M. Wolfe. A New Approach to Array Redistribution: Strip Mining
Redistribution. In Proceedings of PARLE’94 (Athen, Greece), Jul 1994.

18. A. Wakatani and M. Wolfe. Effectiveness of Message Strip-Mining for Regular and
Irregular Communication. In PDCS (Las Vegas), Oct 1994.

19. H. Zima and B. Chapman. Compiling for distributed-memory systems. In Pro-
ceedings of the IEEE, 1993.

